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Systems in standard form and quasilinear systems with many fast variables are 
examined. It is shown that when the transient slow motions are uniformly ex- 
ponentially stable, the solutions approximate the exact ones on an infinite time 

interval under an asymptotic separation of the motions. A relation is found be- 
tween the size of the stability domain, the order of the exponent in the estim- 
ate of the resolving matrix of the equations in variations, and the number of 
operations ensuring the approximation. 

1. Asymptotic approximation of nonquasistation- 
ary solutions of systems in standard form on an in- 

finite time interval. In an n-dimensional Euclidean space x1, . . ., 

a% we consider a system in standard form 

2’ = EX (5, t, E) (1. 1) 

where z is a column vector and the vector-valued function X , for t > to, 1 e 1 

< 60 and z from some domain G , is continuous in t and is uniformly bounded 
together with m -k 1 derivatives with respect to z and m derivatives with respect to 

E. Let us consider an improved m -th approximation to the solution of system (1. l), 

constructed by the averaging method 

ZP) = E, + EUl (k E,) + * - * + em %?a (t, kn; 

where &, satisfies the equation 

(1. 2) 

dE, / dt = r%, (Em) + . . . + Em&-l (Em) = eE~-l) (E,, 8) ( 1.3) 

We assume that Uj (to, &,,) = 0, j = 1, . . ., m. Then E,,, should be determined 
under the initial condition E,,, (to) = Em0 = xtrnJ (to) = z (to). We assume that 
all the means of form 

to+T 

Uj(t, Em)&! (1.4) 

encountered during computations by the averaging method, exist and are uniformly 
bounded in domain G together with the first derivatives with respect to &,, , and 
that the functions uj and aUj / a&,, are uniformly bounded for t > to, Em E G. 

It was shown in [l] that the bound 1 2 - ~‘“‘l<C, -18 1”’ is valid for solutions of 
form( 1.2) on an interval of order T/I e 1, independently of the properties of the evolution- 
ary components & (1). The same bound is possible on intervals of larger order [Z] 
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for quasistationary solutrons & = const and on an infinite interval for stable quasist- 
ationary solutions (3ogo~ubov’s theorem), Later on we indicate some other cases of 
existence of a uniform approximation of nonstationary matrons on an infinite interval 

both for systems in standard form as well as for systems of a more general form, 
By %, (t, to, a) we denote the solution of Eq. (1.3) with initial condition%m (r,) 

= %MI = a, and by U, (t, a, t,, a) , the solution of the matrix equation 

(1. 5) 

with initial condition U, .(s, s, t,, a) = E, where E is the unit matrix; U, (t, s, 
&, a) is the resolving matrix of the equation in variations of systems (1.3) on the sol- 
u.tion %, (t, to, a). Later on we examine the case when the solution %, (t, to, a) 
is uniformly exponentially stable with respect to the linear approximation, i. e, , when 

/I Urn (t, s, to, a) 11 < N,e-v~‘t-sf (1, 61 

for all t > s > to. 

T h e o r e m 1. Suppose that the solution %, (t, to, a) , together with its f~ - 
n~ghborh~d, where p is independent of t and e , remains in G for all t > t, and 
for sufficiently small 1 E 1 . Let relation (1.6) be valid and let the exponential stabil- 
ity first appear in terms of the k-th order in e, i, e., Y, = 1 E 1” v,k , vmk and 
hr, being independent of E. Let the solution %, (t, to, a) belong to a family of 
u~formly exponentially stable solutions of the following form: for all t, > to there 
exists a ball of radius 6 not depending on t,, with center at point %, (tI, to, u), 

such that each solution %, (t, tr, EmI), h aving hit the point %llar of this ball at 

8 = & , remains in G together with its p ( %,I) -neighborhood, and to this solution 

there corresponds a resolving matrix U,, (I, s, tr, %,3 satisfying condition (1, @with 

the same constants hr, and v, when t > s > t, . Let the ball’s radius be of order 

r , i.e., 6 = 1 E I’S,, where 6, is independent of 8. Let m > k -/- r - 1. 
Then for sufficiently small 1 E 1 the solution z (t) of the original system (1.1) with 

initial condition z (to) = a remains in G for all t > to and is approximated by 

the m -th approximation (1.2) on the whole interval to L< E < oo with accuracy 

1 E I m-k-k1 , i.e., for all t > to 

t 2 (t) - L-e) (t) I < c, I E p-k+1 ( 1.7) 

where C, is independent of t and a. 
P I: o o f. In (1.1) we introduce a new variable % by the relation 

5 = % + EU1 (t, %) + * . * + em&n (t, %I 
(1.9 

For the solution with initial condition x (to) = a we have % (to) = a. Since a E 

G - P, an interval t, < t < t, + T exists in which -f E G. Since the dertv- 
atives &.Q / a% are uniformly bounded when % E G , a number et d 80 exists 

suchthatwhen le I\<E~ thematrixE_tEaUI/a%+...+emdu,fa%has 
an inverse. Under these conditions % satisfies the equation 

d% / dt = Eefm-‘) (g. e) + Em+‘R, (ti, h 8) 
(1.9) 

For % E G, I 8 I < % and t > to the function R, is uniformly bounded. r, e. . 
the bound 1 R, (I& t, 8) 1 < rmE is valid, where r, does not depend on %, r, &. 
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Equation (1.9) is equivalent [3] to the integral equation 

EC& to, a) = Em@, to, a)+e*++,(t, s, s, E(S, to, a))R&, s, e)ds(l’lO) 
to 

From the condition k - $j, = 0 when t = to and the assumption &,, (t, to, a) E 
G- P it follows that a time interval to < t < to + T,exists when 1 E - E,,, 1 
< 6. The relation 6. < p is valid by the definition of the quantities p and 6 ; 
consequently, E (t) E G when to < t < t,+T, ,. In this interval, according to 

the theorem’s statement, the bound (1.6) is valid for the matrix u, in the integrand 

of (1.10). Therefore, 
t 

1 E - Em I< 1 e I*+1 i Nme-v*(t++m ds < D, 1 e ImeLt ( 1. 11) 

D, = rmNm / v,k 

Relation (1,ll) is valid for those t when 1 5 - E, 1 < 6 = 6, I e I’. If m > 
kfr-I‘ then the inequality D, I E Im-k+l < 6 is fulfilled for sufficiently 

small 1 e I independently of the values of constants N,, rm, vmka The equalities 

I E - E, I = 6 ad I E - En, I = p are impossible, and relation (1.11) is valid 
for all t > to. 

Consider relation ( 1.8). From the uniform boundedness of functions ui (t, E) for 

to < t < co and 5 E G follows 

1x-E I< lelcl+. . . + I8 P, (1.12) 

where cl, . . ., c, are constants not depending on t, E, e, such that I Uj (t, F;) ( 
<cp. But, according to (1.11). the curve E (t, to, a) remains in a small neighbor- 

hood of curve &,, (t, to, a> and, consequently, remains in G together with its PI - 
neighborhood, where p1 is independent of E. Therefore, for sufficiently small I e I 
the curve 2 (t), remaining according to (1.12) in a small neighborhood of curve E (t), 
remains in G for t > to. Analogously with the aid of (1.2) we can show that sP’) 

(t) E G for t > to. 
Let us estimate I II: - LIP’) I. We have 

I z - SP) I = I (E - Em) + 8 [u, (4 E) - Ul (6 Em)1 + 

* + 8” [hl (t, El - wtl tt, E,)J I < 
i B - E, I (1 + I8 Id, + . . . + I e I” 4J = 
I E - E, I (1 + I e I d(*)) 

(1.13) 

Here the constants d,, . . ., d, , not depending on t and e , are such that II au, / 
at II < dj, t > to, E E G. The existence of such constants follows form the uni- 
form boundedness of derivatives dui / 13& From ( 1.11) and (1.13) we get that for 
sufficiently small 1 e I 

Iz-z(~) l<D,(i + le IdPI) le Im-r+l<Cm le Im-A+l (1.14) 

where C, is a constant not depending on t and e. 
N o t e 1. We can obtain an approximation of the same order by retaining in 

(1.2) only the terms containing e to powers no higher than m - k. However, the 
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remaining vibration terms up to degree n- 1 are necessary for the construction of 
the functions Sm_k+r, . . ., E,,. 

N o t e 2. The relation 

urn (4 to, to, 4,,) = g-- 
m0 

em it> to, em,, (1, 15) 

is well known. Hence it follows that when [ &,.,@ - a 1 f 6 

I Gn (C fo, &no) - %n (f, to, Q) Id 

max 
rt,o-49~ 

II u, (4 to, to, 5,0) f I Lo - a I e N,e+m(t-fO) I C,,-a 1 

( 1. 16) 

L. e., the functions Em 6, to, t,,J come together as t - co. The functions Em (I, tl, 
&d, falling at t = 1, into a ball of radius 6 with center at point E, (tl, to, a), also 

come together with them..Thus, at each instant t, > to the quantity 6 is an estimate of the 
domain of exponential attraction or the solution Em@, t,, fj, (tr, t,, a)) with given 
values iV, and ‘mk l 

181 m-k*1 
A bwnd of the form I E (6 to, limo) - E, (t, to, a) i < D, 

is valid, obviously, for the solutions with initial conditions fmo, l irno - 
= 1 f 6, = I E p,, where 6,, < 6, and 6,, is independent of 8 . Therefore, the 

functions % ii, to, Em01 , rem~~in~g in a neighborhood of the functions coming togeth- 

er, will differ from each other for large t by a quantity of order 18 Im-k+l; the same 

is true of functions z (t, to, 5,0). This property can be looked upon as a practical 

analog of stability. 

Generally speaking, the quantities 6 and vm are independent characteristics of 

the stability of motion 5, (t, to, a) , which enables up to adopt independent bounds 
for them. But inequality (I.. 11) can be obtained without making any assumptions on 

the magnitude of 6. 
T h e o r e m 2. Let function g, (t, to, a) and matrix u, (t, S, to, a) satis- 

fy the hypotheses of Theorem 1. Let function u Q(m-l) have uniformly bounded second 

derivatives in G . Let m #> 2k - 2. Then bound (1.17) is valid, 

To prove this we make only formal estimates, not proving that the functions being 

examined Lie in G . We estimate the difference 2, = E - 8, , setting Up a 

nonlinear equation analogous to the kiccati equation (see [31, part 2) 

fjz, / at = & [BP-Q (Em + 2,) - ‘V+l) (E7lJ1 -I- 
( x. 17) 

SrnilRm C&n, E%, t, 4 

with initial condition 2, (to) = 0. We write(l.17) as 

d%a -.-.-=e 
dt &n+&&at z~)+~~~l~~ 

(1.18) 

Here the derivative is taken with grn = %, (t, to, a). From the uniform boundedness 

in G of the second derivatives ,f function 8(m’1) follows a bound for the nonlinear 

term: 1 F, I< IIf,\ Z,I”. 
Equation (1.18) together with the initial condition is equivalent to the integral eq- 

uation 
(1. 19) 

Using the bound given above, we obtain the integral inequality 
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(1.20) 

1 (2,) = J Nme-vm+s) [Mm 12, (s) 1% + 1 e I” r,] ds 
to 

Let zrn be a solution of the integral equation 

zrn (t) = I 8 I 1 tZm) (1. 21) 

Then 1 2, 1 < Zm (for example, see inequality (1. 25) in Chapter 1 of [4]; in ord,er 
to make use of this inequality we need to multiply both sides of (1,20) and (1. 21) by 
oxP Vmt). Function z, satisfies the differential equation 

dZ, / cEt = -VmZm $ I E INmM&Tm2 + 18 Im+lNJm (1. 22) 

with initial condition z, (to) = 0. Function z m remains bounded for all t if the 
inequality 

v,2 - 4Nm2Mmrm I 8 I” +2 > 0 ( 1. 23) 

iS fulfilled. Since v, = V,& I e I*, when m > 2k - 2 inequality (1.23) is ful- 
filled for sufficiently small 1 e I independently of the values of Vmk, N,,, , etc. 
Solving Eq. (1.22) under condition (1.23), we obtain 

‘m@) < 

VLk 1 E p-2 r,l Elm ‘I* (1. 24) 
4Nm2Mm2 - Mm 

Consequently, a constant D, , independent of t and E , exists such that bound( l.U, 
is valid. The proof that E, s E G and the proof of bound (1.7) are carries out as in 

Theorem 1. 
Under the condition n > 2k - 2 it can he shown that the solution z (t, to, a) 

is exponentially stable under the initial perturbations I x0 - a I = 0 (@-l). The 
same is true of the solutions Em (t, t,,, a) and E (t, t,, a) of Eqs. (1.3) and ( 1.9). 
Thus, a domain of exponential attraction of radius 6 = 0 (~3, where r = k - 1 , 
exists at t = t, . If k = 1 , then one and the same approximation of order m foll- 
ows from Theorems 1 and 2 for all m >, 1. From Theorem 2 it follows as well that 

the solution x (t, t,, a) is exponentially stable. When k < m < 2k - 2 an approxi- 
mation on finite intervals of order greater than 1/e can be obtained from Eq, (1, 22). 

Using (1.10) and (1.11) the results of Theorems 1 and 2 can be extended to the case 

when the resolving matrix satisfies, instead of the exponential stability condition (1, 6). 
the condition 

(1. 25) 

where P, (et) is a polynomial of degree h in et . In particular, when h = 1 ( a 
case typical of damped oscillations in systems with little friction) bound (1.7) takes the 
form 

15 (t) - Jm) (t) 1 < cm 1 e ph+l, m > 2k + F - 1 

2. Approximation of solutions of linear equations 
o n a n i n f i n i t e t i m e i n t e r v a l. Consider the linear equa$ion 

Y’ = A (5) Y + f (3, t) 
(2.1) 
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where y is a column vector with components I/~,. . ., yz, and the known n-dimen- 
sional vector r (t, 8) has the derivative 5’ - 8 X (t) proportional to a small para- 
meter 8. The following procedure is possible for constructing asymptotic approxim- 
ations to the solution of the Cauchy problem for Eq. (2.1) with initial condition y (to) 
= b * We write the approximation y(j) (r) as 

y(j) = ‘Pa (t, z) + &(Pr (i, z) + . . . + F.(j)cpj (t, 2) (2.2) 

where rp, (t, z) is a solution of the equation 

‘po’ = A (4 ‘PO + f lx, t) 

in which 5 is taken to be a parameter not depending on t . The subsequent terms in 
expression (2.2) are determined in succession from the equations resulting from the 

substitution of (2.2) into (2.1) and from equating the coefficients of like powers of 8. 
We arrive at the equations 

which we integrate under the assumption that 2 is a parameter not depending on t. 
For definiteness we can set ‘p. (to, z (e,)) = b and cpf (to, 2 (to)) = 0. The functions 

Cpi are determined to within an arbitrary function of Z, differentiable a sufficient 
number of times, taking the specified value when z = x (to) . Such a situation is 

usual for asymptotic methods. 

T h e o r e m 3. Suppose that vector I (t) remains for all t > to in a domain 
G of space x1,. . ., x,. For 2 E G and for all t > to let the functions A (z), f (x, t) 

and X (t) be uniformly bounded, f (x, t) and X (t) be continuous in t, and A (x) 

and f (G t) have m uniformly bounded derivatives with respect to x. For z E G let 

the eigenvalues A0 (x) (P = 1,. . . , p) of matrix A (x) satisfy the condition Re h, 
(x) < - p < 0, where p is independent of x and E. Then for sufficiently small 
I E 1 the solution y (2) is approximated by the approximation y(i) (t) on the whole 

time interval with accuracy J E lj’l* i. e., for all t 2 to 

1 Y (t) - Y(j) (t) 1 < Kjl & I'+' 
(2. 3) 

where Kj is inlependent of t and E. 
To prove this we consider the difference uj = y - y(j)_ It satisfies the equation 

and initial condition 

Vj’ = A (2) v j - zg+1 
acp j-1 

TX, vj (to)= 0 

By Coppel’s theorem (see Sect. 5 in Chapter VI of [5], for instance) the resolving mat- 
rix L (t, te) of the corresponding homogeneous equation satisfies the conditions 

1 L (t, to) II < Qe-~(t-t*) 

where Q and y do not depend on t and e. Therefore, 

Function ‘pa is a bounded function of t as a consequence of the boundedness of f 

(5, t) and of the condition Re h, < 0 . From the boundedness of the derivatives with 
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respect to J: of f (z, 1) and A (z) follows the boundedness of function (acpo / as) X. 
Therefore, function ‘pl is bounded as well, etc. Finally, the function (&+r / 19x) X, 

occurring in the integrand in (2.41, is bounded. Hence follows bound (2.3). 
In the expressions for the derivatives acpi / &E there occur secular terms containing 

products of functions of the form tk exp h,t by bounded time functions. When X (t) 
and f (5, t) are periodic in t with period independent of 5 or are finite sums of the 

form 
x a,, (I) cos ~,t + b, (z) sin o,t 
Y 

where the frequencies oy , independent of 5 ,are mutually irrational, while the h, 
are real quantities, we can find an algorithm for constructing the asymptotic approxim- 

ations containing only exponentials and periodic or quasiperiodic functions. To do 
this we should separately construct a periodic or quasiperiodic solution of the inhomo- 

geneous equation and particular solutions of the homogeneous equation, in the same 

way as, for example, in the case z = r = Et (see [6], for instance). 

3. Asymptotic separation of motions on an infin- 
ite time interval in quasilinear systems with many 

f a s t v a r i a b 1 e s. Consider the quasilinear system 

z’ = EX (5, y, t, E), y’ = A (&/ + f (x7 t) (3.1) 

System (3.1) is a special case of the systems with many fast variables studied in [7]. 
However, for the asymptotic integration of systems of type (3.1) it is more convenient 
to apply, instead of Volosov’s method, a simpler method proposed in [S] especially for 

quasilinear systems. Using the results obtained in [S] we show that the exact solution 

of system (3.1) can be approximated by an approximate solution on an infinite time 

interval. According to [8] an approximate solution of system (3.1) is constructed as 

follows. Let the initial conditions r (t,) = a and y (to) = b be given, We write 
y(J) as 

Y(j) = ‘pa (t, Z) + E(Pr (t, S) + . - - + E$j Ct, z, (3.2) 

Here ‘p,, is a solution of the equation 

'PO * = A (&PO + f (? 0 (3.3) 

found under the assumption that in this equation z is a parameter not depending on 
time. For definiteness we assume that ‘pa (to, 5 (to))= ‘PO (to, a) = b. Then cpi 
(to, a) = 0, i = 1, . . ., j. 

Entering (3.2) into the first equation in (3. 1) and expanding the function X (5, $I(‘), 
t, e) in powers of E , we have 

5’ = 95x0 (5, qo, t) + e2 [Xl (x, qo, t) + axo go”” f, fpl] + . . . (3.4) 

Substituting y(j) in the place of y ‘in the second equation in (3.1) and replacing x’ 
by expression (3.4). by comparing the coefficients of like powers of e we obtain eq- 
uations for the successive ilermination of the functions ‘pr (t, z). . . . , Cpj (t, x) 

. 
(Pl = A(x) 'p1- as X0(& cpo, 0 (3. 5) 

‘pz’ = A (5) ‘p2 .- 2 x0 (x9 cpo, t) - $$ [Xl (5, cpo, q + gj cpl] 



244 A, S, Mirkina and I(. Sh. Kbodzhaev 

etc. Equations (3.5) are integrated under the condition that z = const. Inserting 
the functions y(j) (t, 3) thus found in the place of y in the first equation in (3, l), 
we arrive at a system in standard form 

I’ == EX (5, $1 (t, 5, r), t, E) (3.6) 

to which we can apply the averaging method. As we shall see from what follows,when 
determining the m -th appro~mation to the solution of system (3.1) it makes sense to 

examine system (3.6) only for j = m - 1 

T h e o r e m 4. For x E G, y E G,. I E 1 Q eg and t > t, let the funct- 
ions f (x, t), A (x) and X (s, y, t, e) satisfy with respect to variables x, t, e 
the same requirements as in Sects.1 and 2. Let function X have m f 1 uniformly 
bounded derivatives with respect to y. For j = m - 1 let the improved m -tin 
approximation to the solution of system (3.6) and the equation for the slow motions, 
obtained from (3.61, possess the same properties as in Theorem 1 and let 
ZPQ,. a) remain in G, - 

y(m-1) (t, 
a, where a is independent of t and E. Then the solut- 

ion of system (3.1) with initial conditions 

z (t,) = s@@ (t,) = E, (to) = a, y (to> = y(m-Q (to, a) = b 

remains in G x G1 for all ;e > to for sufficiently small 1 E 1 and m > k -!- r 
- 1 and can be approximated by the functions ICC”) and yfm-11 (t, z(“J) with an 

accuracy 1 E Im-k*l, Le., 

IX- d”Q 1 < C, 1 E j’+k+l (3,V 7 

IY- y(m-1) (t, x(m)) 1 < c,, / E /m-k+1 

P r o o f. We assume that z and y and all their approximations being examined 

remain in G and Cr. In (3.1) we introduce a new variable 9 by the relation 

4 = y - y@-1) (t, LtT) ($ (t,) = 0) (3.8) 

We arrive at the system 

x’ = EX (s, y(m-l), t, E) + .Ep, (G 9, t, e)$ (3,9) 

$’ = A(x)9 --E 

Here Pm+ is the remainder term in the Lagrange formula representation of X (5, 
y(m-1) f 9, t, E) while \-lr, consists of terms of order em and higher in the express- 
ion E (~~(~-1) / ax)X (z, #m-i), t, 8) if X is represented as an expansion in powers 
of E with a remainder term of order m - 1. By virtue of the theorem’s hypothesis 

the functions P,, Yy,, dtp, I ax , . . . , dfp,_l I dx are uniformly bounded. There- 

ore, for sufficiently small \ E 1 the real parts of the eigenvalues of the matrix 

A (~1 - E (&p, / dLr + . . . + Em-ldq)m_l / 6b)P, 

are less than the constant - y’ - -p + 1 &PI I. This permits us to apply Coppel’s 
theorem to the second equation in (3.9) and to obtain, analogously to Sect. 2, the 

bound ]~I<cl~l”~ where c is independent of t and E.’ Thus, we obtain 

the bound 1 &Pm* 1 < plm 1 E j”l for the term eP,$ . 
Suppose that for j = m - 1 the improved m-th approximation of form (1.2) 

and the Eq. (1.3) have been constructed for system (3.61, In (3.9) we introduce the 
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new variable % by the relation (1.8). Instead of the first equation in (3.9) we obtain 
the equation, analogous to (1,9), 

dE 
dt= e~@‘--~) (%) + em+r [R, (E, t, e) + RX, (E, 9. t, 41 (3.10) 

where the function R,, is uniformly bounded. Now we can repeat the proof of 
Theorem 1, replacing R, by R, f R,,. Hence follows the first of bounds(3.7). 

Consider the expression yc”-l) (t, zP) (t), 8). We obtain 

1 y - jp+l) (t, drn), 8) 1 = 1 fy - p-l) (& 2, e)J + 
ly(m-l) (t, 2, 8) - Jp-l) (t, cdrn’, e)l I < 
cIeIrn+hIs - a$“‘) I< c 1 e I” + hC, 1 e I-‘+l 

Here the constant h, independent of t, and e, exists by virtue of the botmdedness 
of the derivative +/m-l) / &r. The second bound in (3.7) is obtained from (3.10). 
Having the bounds derived above we can show, analogously to Sect, 1, that from the 
conditions %, (t) E G and yP1) (t, s(“‘)) E Gl - a it follows that for sufficien- 
tly small 1 8 I the functions g (t), z (t) E G and # (t) E 4. 

If the hypotheses of Theorem 2 are valid for the Eqs. (3.6) of slow motions when 
j=m_ 1 , then an approximation of form (3.7) can be proved when m > 2k 
- 2.It turns out that the solution z (t) is exponentially stable, while the domain of 
attraction at t = t, has dimensions of 0 (I e Ik-l) with respect to z and dimens- 
ious not depending on E with respect to 9. 

Another variant is possible for eliminating the fast variables in system (3.1). Now 
2 is written in form (1.2) and ZJ as 

ZP-f, = cpo (6 %7r&) f Wl (6 Em> + * f l + ~~llp,l (4 Ln) 

An equation of form (1.3) is constructed for g, . Inserting the expression indicated 
into Eqs. (3. I), replacing %’ in accordance with (1.3), and equating terms of like 
powers of e,, we obtain the equation 

‘po’ = A (%,)(po + f (E,, t>, E, = const 

for 4D@ . After this the function 8, is found as the average of X with 9 = cpnvetc. 
In other words, in this variant the averaging of system (3.6) and the representation of 
the fast variables f-in terms of slow ones are implemented ~multan~usly, An approx- 
imation of type (3.7) can be proved for the second variant as well, with the sole prov- 
iso that the ~~~~0~ Z, = li, - E, and %# = y - ypr) be estimated simultan- 
eously. 
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